Affiliation:
1. Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
Abstract
ZnO : V thin films with different doping concentration (0%, 1.8%, 3.9%, 6.8%, 10%, and 13%) were fabricated by direct current magnetron sputtering. The X-ray diffraction patterns show that the wurzite structure changed with doping concentration. Furthermore, we could not find any vanadium cluster or phase separation in the X-ray diffraction patterns. The photoluminescence of ZnO : V with different vanadium concentration was investigated. The room temperature photoluminescence spectrum indicates that the films have purple band with 370 nm and the bands with 475 and 490 nm. The peak intensity of room temperature photoluminescence spectrum was affected by vanadium contents and its position remained stable. The intensity of band with 370 nm increases with raising the vanadium concentration and then decreases. The hysteresis behavior indicates that films were ferromagnetic at 50 K. Room temperature ferromagnetism was observed for the film with the doping concentration at 6.8%. However, in this case almost no hysteresis is noticeable. The results implied that the doping concentration and crystalline microstructure influence strongly the film's magnetic characteristics. Increasing the vanadium content in the film caused the degradation of the magnetic ordering.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献