Short-term traffic flow prediction based on 1DCNN-LSTM neural network structure

Author:

Qiao Yihuan1,Wang Ya2,Ma Changxi1ORCID,Yang Ju1

Affiliation:

1. School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Institute of Design and Management, China Construction Eighth Engineering Division Co. Ltd., Shanghai 201206, China

Abstract

In the past decade, the number of cars in China has significantly raised, but the traffic jam spree problem has brought great inconvenience to people’s travel. Accurate and efficient traffic flow prediction, as the core of Intelligent Traffic System (ITS), can effectively solve the problems of traffic travel and management. The existing short-term traffic flow prediction researches mainly use the shallow model method, so they cannot fully reflect the traffic flow characteristics. Therefore, this paper proposed a short-term traffic flow prediction method based on one-dimensional convolution neural network and long short-term memory (1DCNN-LSTM). The spatial information in traffic data is obtained by 1DCNN, and then the time information in traffic data is obtained by LSTM. After that, the space-time features of the traffic flow are used as regression predictions, which are input into the Fully-Connected Layer. In the end, the corresponding prediction results of the current input are calculated. In the past, most of the researches are based on survey data or virtual data, lacking authenticity. In this paper, real data will be used for research. The data are provided by OpenITS open data platform. Finally, the proposed method is compared with other road forecasting models. The results show that the structure of 1DCNN-LSTM can further improve the prediction accuracy.

Funder

National Natural Science Foundation of China Grant

Program of Humanities and Social Science of Education Ministry of China Grant

Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3