A wireless sensor network location algorithm based on insufficient fingerprint information

Author:

Qin Ningning1,Chen Ken1

Affiliation:

1. Key Laboratory of Advanced Process Control for Light Industry of, Ministry of Education, Jiangnan University, Wuxi 214122, China

Abstract

To realize sensor network-based positioning, the use of conventional techniques based on fingerprints has considerable cost due to the need of establishing in an offline manner a fingerprint database. Besides, it is also time-consuming when searching the database for calculating the localization solution. To address these drawbacks, we first propose to utilize the inverse distance weighted (IDW) interpolation method to improve the spatial resolution of the fingerprint database. The genetic algorithm learning machine (GAELM) is introduced to speed up the database lookup while enhancing the positioning accuracy of the fingerprint-based localization. Experiments show that the proposed Extreme Learning Location algorithm based on Insufficient Fingerprint information (ELL-IF) offers improved positioning performance over the BP-neural network (BP-NN)-based and extreme learning machine (ELM)-based methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Crop Selection Using Gravitational Search Algorithm;Mathematical Problems in Engineering;2021-04-19

2. Artificial Intelligence-Based Wireless Sensor Network Radio Frequency Signal Positioning Method;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2021

3. Design of asymmetrical multiple open slot loaded microstrip antenna for WiBro/WiMAX/WLAN band application;Modern Physics Letters B;2020-05-07

4. A novel approach for finding crucial node using ELECTRE method;International Journal of Modern Physics B;2020-04-10

5. A solution for priority-based multi-robot path planning problem with obstacles using ant lion optimization;Modern Physics Letters B;2020-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3