Investigation of structural and optical properties of zirconia dioxide nanoparticles by radiation and thermal methods

Author:

Imanova G. T.1,Agayev T. N.1,Jabarov S. H.12ORCID

Affiliation:

1. Institute of Radiation Problems, ANAS, AZ-1143 Baku, Azerbaijan

2. Azerbaijan State Pedagogical University, AZ-1000 Baku, Azerbaijan

Abstract

The X-ray diffraction (XRD) spectrum of the nano-ZrO2 compound was drawn, the crystal structure was determined at room temperature and under normal conditions. Radiation-thermal decomposition of water on nanosized ZrO2 in the temperature range of [Formula: see text]–673 K has been studied by Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. It has been shown that nanosized zirconium dioxide adsorbs water via the molecular and dissociative mechanisms. Intermediate products of the radiation-induced heterogeneous decomposition of water, namely, the molecular oxygen and hydrogen peroxide radical ions, zirconium hydride, and hydroxyl radicals have been detected. A comparative analysis of changes in the absorption bands (ABs) of molecular water and surface hydroxyl groups with temperature has been conducted, and the stimulating role of radiation in the radiation-thermal process of water decomposition has been revealed. With the participation of nano-ZrO2 during the radiation-heterogeneous decomposition of water to reveal the role of unbalanced cargo carriers that play the role of energy carriers under the influence of gamma-quantities in nano-ZrO2 and nano-[Formula: see text] systems paramagnetic centers, their origin and acquisition kinetics learned by the EPR method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3