From noncommutative diagrams to anti-elementary classes

Author:

Wehrung Friedrich1

Affiliation:

1. LMNO, CNRS UMR 6139, Département de Mathématiques, Université de Caen Normandie, 14032 Caen Cedex, France

Abstract

Anti-elementarity is a strong way of ensuring that a class of structures, in a given first-order language, is not closed under elementary equivalence with respect to any infinitary language of the form [Formula: see text]. We prove that many naturally defined classes are anti-elementary, including the following: the class of all lattices of finitely generated convex [Formula: see text]-subgroups of members of any class of [Formula: see text]-groups containing all Archimedean [Formula: see text]-groups; the class of all semilattices of finitely generated [Formula: see text]-ideals of members of any nontrivial quasivariety of [Formula: see text]-groups; the class of all Stone duals of spectra of MV-algebras — this yields a negative solution to the MV-spectrum Problem; the class of all semilattices of finitely generated two-sided ideals of rings; the class of all semilattices of finitely generated submodules of modules; the class of all monoids encoding the nonstable K0-theory of von Neumann regular rings, respectively, C*-algebras of real rank zero; (assuming arbitrarily large Erdős cardinals) the class of all coordinatizable sectionally complemented modular lattices with a large [Formula: see text]-frame. The main underlying principle is that under quite general conditions, for a functor [Formula: see text], if there exists a noncommutative diagram [Formula: see text] of [Formula: see text], indexed by a common sort of poset called an almost join-semilattice, such that [Formula: see text] is a commutative diagram for every set [Formula: see text], [Formula: see text] for any commutative diagram [Formula: see text] in [Formula: see text], then the range of [Formula: see text] is anti-elementary.

Publisher

World Scientific Pub Co Pte Lt

Subject

Logic

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3