Affiliation:
1. Institut für Philosophie I, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
2. Dipartimento di matematica «Giuseppe Peano», Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
Abstract
Answering one of the main questions of [S.-D. Friedman, T. Hyttinen and V. Kulikov, Generalized descriptive set theory and classification theory, Mem. Amer. Math. Soc. 230(1081) (2014) 80, Chap. 7], we show that there is a tight connection between the depth of a classifiable shallow theory [Formula: see text] and the Borel rank of the isomorphism relation [Formula: see text] on its models of size [Formula: see text], for [Formula: see text] any cardinal satisfying [Formula: see text]. This is achieved by establishing a link between said rank and the [Formula: see text]-Scott height of the [Formula: see text]-sized models of [Formula: see text], and yields to the following descriptive set-theoretical analog of Shelah’s Main Gap Theorem: Given a countable complete first-order theory [Formula: see text], either [Formula: see text] is Borel with a countable Borel rank (i.e. very simple, given that the length of the relevant Borel hierarchy is [Formula: see text]), or it is not Borel at all. The dividing line between the two situations is the same as in Shelah’s theorem, namely that of classifiable shallow theories. We also provide a Borel reducibility version of the above theorem, discuss some limitations to the possible (Borel) complexities of [Formula: see text], and provide a characterization of categoricity of [Formula: see text] in terms of the descriptive set-theoretical complexity of [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ON UNSUPERSTABLE THEORIES IN GDST;The Journal of Symbolic Logic;2023-11-06