Torsion-free abelian groups with optimal Scott families

Author:

Melnikov Alexander G.1

Affiliation:

1. The Institute of Natural and Mathematical Sciences, Private Bag 102 904, NSMC Albany 0745, Auckland, New Zealand

Abstract

We prove that for any computable successor ordinal of the form [Formula: see text] [Formula: see text] limit and [Formula: see text] there exists computable torsion-free abelian group [Formula: see text]TFAG[Formula: see text] that is relatively [Formula: see text] -categorical and not [Formula: see text] -categorical. Equivalently, for any such [Formula: see text] there exists a computable TFAG whose initial segments are uniformly described by [Formula: see text] infinitary computable formulae up to automorphism (i.e. it has a c.e. uniformly [Formula: see text]-Scott family), and there is no syntactically simpler (c.e.) family of formulae that would capture these orbits. As far as we know, the problem of finding such optimal examples of (relatively) [Formula: see text]-categorical TFAGs for arbitrarily large [Formula: see text] was first raised by Goncharov at least 10 years ago, but it has resisted solution (see e.g. Problem 7.1 in survey [Computable abelian groups, Bull. Symbolic Logic 20(3) (2014) 315–356]). As a byproduct of the proof, we introduce an effective functor that transforms a [Formula: see text]-computable worthy labeled tree (to be defined) into a computable TFAG. We expect that this technical result will find further applications not necessarily related to categoricity questions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Logic

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Degree Spectra of Polish Spaces;Siberian Mathematical Journal;2021-09

2. Categoricity Spectra of Computable Structures;Journal of Mathematical Sciences;2021-05-28

3. Punctual Categoricity Relative to a Computable Oracle;Lobachevskii Journal of Mathematics;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3