Affiliation:
1. Astronomy and Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
Abstract
In the last decade, enormous progress has been achieved in the understanding of the various facets of coalescing double neutron star and neutron black hole binary systems. One hopes that the mergers of such compact binaries can be routinely detected with the advanced versions of the ground-based gravitational wave detector facilities, maybe as early as in 2016. From the theoretical side, there has also been mounting evidence that compact binary mergers could be major sources of heavy elements and these ideas have gained recent observational support from the detection of an event that has been interpreted as a "macronova", an electromagnetic transient powered by freshly produced, radioactively decaying heavy elements. In addition, compact binaries are the most plausible triggers of short gamma-ray bursts (sGRBs) and the last decade has witnessed the first detection of a sGRB afterglow and subsequent observations have delivered a wealth of information on the environments in which such bursts occur. To date, compact binary mergers can naturally explain most — though not all — of the observed sGRB properties. This paper reviews major recent developments in various areas related to compact binary mergers.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
125 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献