Affiliation:
1. Mountain Physics Camp, Center for the Studies of the Glass Bead Game, Bir, Himachal Pradesh 176077, India
Abstract
If dark matter exists in the form of ultralight fermionic and bosonic species, then (a) it can accelerate evaporation of astrophysical black holes to the extent that their lifetimes can be reduced to astronomical time scales, a and (b) if there are extremely large number of such species it has the potential to solve the hierarchy problem [H. Davoudiasl, P. B. Denton and D. A. McGady, Phys. Rev. D 103 (2021) 055014; G. Dvali, Fortschr. Phys. 58 (2010) 528]. Here, we put forward a proposal that darkness of many of these new particles is natural, and in addition, the net zero point energy of the fermions exactly cancels that coming from the new bosons. The needed fermion–boson equality, and matching the fermion–boson degrees of freedom, comes about naturally. A very direct argument that allows the departure from the spin–statistics theorem is presented. a This happens in two steps: first, the relatively rapid evaporation of the ultralight particles, and the second slower one associated with a hundred or so ‘heavier’ particles of the standard model.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献