BOUNDED STRATEGIES FOR MAXIMIZING THE SHARPE RATIO

Author:

YE JIANG1ORCID,WANG YIWEI1,RAZA MUHAMMAD WAJID2

Affiliation:

1. Department of Finance, School of Economics and Management, Southeast University, Nanjing 210096, P. R. China

2. Department of Management Sciences, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan

Abstract

Bernard et al. [(2019) Optimal strategies under omega ratio, European Journal of Operational Research 275 (2), 755–767] use convex ordering arguments to determine the bounded payoff for maximizing the omega ratio. However, it appears difficult to apply such reasoning to estimate the bounded payoff for maximizing the Sharpe ratio. As a proposed solution, this paper uses a Lagrange multiplier method to derive the bounded payoff for maximizing the Sharpe ratio. In contrast to the optimal strategy in Bernard & Vanduffel [(2014) Mean–variance optimal portfolios in the presence of a benchmark with applications to fraud detection, European Journal of Operational Research 234 (2), 469–480], the optimal strategy in this paper is bounded from below. It can protect investors from substantial losses when they invest in payoffs with a maximized Sharpe ratio.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Economics, Econometrics and Finance,Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3