WEAK ERROR RATES FOR OPTION PRICING UNDER LINEAR ROUGH VOLATILITY

Author:

BAYER CHRISTIAN1,HALL ERIC JOSEPH2,TEMPONE RAÚL34

Affiliation:

1. Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany

2. Mathematics Division, School of Science and Engineering, University of Dundee, Dundee, DD1 4HR, UK

3. Chair of Mathematics for Uncertainty Quantification, RWTH Aachen University, Pontdriesch 14-16, 52062 Aachen, Germany

4. Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Abstract

In quantitative finance, modeling the volatility structure of underlying assets is vital to pricing options. Rough stochastic volatility models, such as the rough Bergomi model [C. Bayer, P. K. Friz & J. Gatheral (2016) Pricing under rough volatility, Quantitative Finance 16 (6), 887–904, doi:10.1080/14697688.2015.1099717], seek to fit observed market data based on the observation that the log-realized variance behaves like a fractional Brownian motion with small Hurst parameter, [Formula: see text], over reasonable timescales. Both time series of asset prices and option-derived price data indicate that [Formula: see text] often takes values close to [Formula: see text] or less, i.e. rougher than Brownian motion. This change improves the fit to both option prices and time series of underlying asset prices while maintaining parsimoniousness. However, the non-Markovian nature of the driving fractional Brownian motion in rough volatility models poses severe challenges for theoretical and numerical analyses and for computational practice. While the explicit Euler method is known to converge to the solution of the rough Bergomi and similar models, its strong rate of convergence is only [Formula: see text]. We prove rate [Formula: see text] for the weak convergence of the Euler method for the rough Stein–Stein model, which treats the volatility as a linear function of the driving fractional Brownian motion, and, surprisingly, we prove rate one for the case of quadratic payoff functions. Indeed, the problem of weak convergence for rough volatility models is very subtle; we provide examples demonstrating the rate of convergence for payoff functions that are well approximated by second-order polynomials, as weighted by the law of the fractional Brownian motion, may be hard to distinguish from rate one empirically. Our proof uses Talay–Tubaro expansions and an affine Markovian representation of the underlying and is further supported by numerical experiments. These convergence results provide a first step toward deriving weak rates for the rough Bergomi model, which treats the volatility as a nonlinear function of the driving fractional Brownian motion.

Funder

KAUST Office of Sponsored Research

German Research Council

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Economics, Econometrics and Finance,Finance

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3