A LINEAR-PROGRAMMING PORTFOLIO OPTIMIZER TO MEAN–VARIANCE OPTIMIZATION

Author:

LIU XIAOYUE1ORCID,HUANG ZHENZHONG2,SONG BIWEI3,ZHANG ZHEN4ORCID

Affiliation:

1. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

2. Department of Statistics, University of Warwick, Coventry CV4 7AL, UK

3. Huawei Technologies Company Ltd., Shenzhen 518100, P. R. China

4. Department of Mathematics, International Center for Mathematics, National Center for Applied Mathematics (Shenzhen ), Southern University of Science and Technology, Shenzhen 518055, P. R. China

Abstract

In the Markowitz mean–variance portfolio optimization problem, the estimation of the inverse covariance matrix is not trivial and can even be intractable, especially when the dimension is very high. In this paper, we propose a linear-programming portfolio optimizer (LPO) to solve the Markowitz optimization problem in both low-dimensional and high-dimensional settings. Instead of directly estimating the inverse covariance matrix [Formula: see text], the LPO method estimates the portfolio weights [Formula: see text] through solving an [Formula: see text]-constrained optimization problem. Moreover, we further prove that the LPO estimator asymptotically yields the maximum expected return while preserving the risk constraint. To offer a practical insight into the LPO approach, we provide a comprehensive implementation procedure of estimating portfolio weights via the Dantzig selector with sequential optimization (DASSO) algorithm and selecting the sparsity parameter through cross-validation. Simulations on both synthetic data and empirical data from Fama–French and the Center for Research in Security Prices (CRSP) databases validate the performance of the proposed method in comparison with other existing proposals.

Funder

Major Research Plan

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Economics, Econometrics and Finance,Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3