Weighted Graph Embedding Feature with Bi-Directional Long Short-Term Memory Classifier for Multi-Document Text Summarization

Author:

Mulla Samina1,Shaikh Nuzhat F.2

Affiliation:

1. Research Centre Department of Computer Engineering, STES’s Smt Kashibai Navale College of Engineering, Pune, Maharastra, India

2. Department of Computer Engineering, Modern Education Society’s College of Engineering, (MESCOE), Garden Rd, Pune Maharashtra 411001, India

Abstract

In this digital era, there is a tremendous increase in the volume of data, which adds difficulties to the person who utilizes particular applications, such as websites, email, and news. Text summarization targets to reduce the complexity of obtaining statistics from the websites as it compresses the textual document to a short summary without affecting the relevant information. The crucial step in multi-document summarization is obtaining a relationship between the cross-sentence. However, the conventional methods fail to determine the inter-sentence relationship, especially in long documents. This research develops a graph-based neural network to attain an inter-sentence relationship. The significant step in the proposed multi-document text summarization model is forming the weighted graph embedding features. Furthermore, the weighted graph embedding features are utilized to evaluate the relationship between the document’s words and sentences. Finally, the bidirectional long short-term memory (BiLSTM) classifier is utilized to summarize the multi-document text summarization. The experimental analysis uses the three standard datasets, the Daily Mail dataset, Document Understanding Conference (DUC) 2002, and Document Understanding Conference (DUC) 2004 dataset. The experimental outcome demonstrates that the proposed weighted graph embedding feature + BiLSTM model exceeds all the conventional methods with Precision, Recall, and F1 score of 0.5352, 0.6296, and 0.5429, respectively.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Document Summarization Using Multi-Objective Weighted Graph Embedding Feature and Optimized Rank Based Deep Classifier;2024 International Conference on Expert Clouds and Applications (ICOECA);2024-04-18

2. Hybrid Entropy-based Weighted Graph Embedding Model for Multi-Document Text Summarization;2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3