Performance Assessment of Sky Segmentation Approaches for UAVs

Author:

Mashaly Ahmed S.1

Affiliation:

1. Electrical Engineering Branch, Military Technical College, Cairo, Egypt 11766, Egypt

Abstract

Image segmentation is one of the most challenging research fields for both image analysis and interpretation. The applications of image segmentation could be found as the primary step in various computer vision systems. Therefore, the choice of a reliable and accurate segmentation method represents a non-trivial task. Since the selected image segmentation method influences the overall performance of the remaining system steps, sky segmentation appears as a vital step for Unmanned Aerial Vehicle (UAV) autonomous obstacle avoidance missions. In this paper, we are going to introduce a comprehensive literature survey of the different types of image segmentation methodology followed by a detailed illustration of the general-purpose methods and the state-of-art sky segmentation approaches. In addition, we introduce an improved version of our previously published work for sky segmentation purpose. The performance of the proposed sky segmentation approach is compared with various image segmentation approaches using different parameters and datasets. For performance assessment, we test our approach under different situations and compare its performance with commonly used approaches in terms of several assessment indexes. From the experimental results, the proposed method gives promising results compared with the other image segmentation approaches.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on Real-Time Drone Detection Based on Visual Band Electro-Optical (EO) Sensor;2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS);2021-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3