A Generic Framework for Semantic Annotation of Images

Author:

Helmy Tarek1

Affiliation:

1. Information and Computer Science Department, College of Computer Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Mail Box 413, Saudi Arabia

Abstract

Advanced digital capturing technologies have led to the explosive growth of images on the Web. To retrieve the desired image from a huge amount of images, textual query is handier to represent the user's interest than providing a visually similar image as a query. Semantic annotation of images' has been identified as an important step towards more efficient manipulation and retrieval of images. The aim of the semantic annotation of images is to annotate the existing images on the Web so that the images are more easily interpreted by searching programs. To annotate the images effectively, extensive image interpretation techniques have been developed to explore the semantic concept of images. But, due to the complexity and variety of backgrounds, effective image annotation is still a very challenging and open problem. Semantic annotation of Web contents manually is not feasible or scalable too, due to the huge amount and rate of emerging Web content. In this paper, we have surveyed the existing image annotation models and developed a hierarchical classification-based image annotation framework for image categorization, description and annotation. Empirical evaluation of the proposed framework with respect to its annotation accuracy shows high precision and recall compared with other annotation models with significant time and cost. An important feature of the proposed framework is that its specific annotation techniques, suitable for a particular image category, can be easily integrated and developed for other image categories.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3