Counting in Visual Question Answering: Methods, Datasets, and Future Work

Author:

Welde Tesfayee Meshu1ORCID,Liao Lejian1ORCID

Affiliation:

1. Department of Computer Science and Information Technology, Beijing Institute of Technology, Beijing 100081, China

Abstract

Visual Question Answering (VQA) is a language-based method for analyzing images, which is highly helpful in assisting people with visual impairment. The VQA system requires a demonstrated holistic image understanding and conducts basic reasoning tasks concerning the image in contrast to the specific task-oriented models that simply classifies object into categories. Thus, VQA systems contribute to the growth of Artificial Intelligence (AI) technology by answering open-ended, arbitrary questions about a given image. In addition, VQA is also used to assess the system’s ability by conducting Visual Turing Test (VTT). However, because of the inability to generate the essential datasets and being incapable of evaluating the systems due to flawlessness and bias, the VQA system is incapable of assessing the system’s overall efficiency. This is seen as a possible and significant limitation of the VQA system. This, in turn, has a negative impact on the progress of performance observed in VQA algorithms. Currently, the research on the VQA system is dealing with more specific sub-problems, which include counting in VQA systems. The counting sub-problem of VQA is a more sophisticated one, riddling with several challenging questions, especially when it comes to complex counting questions such as those that demand object identifications along with detection of objects attributes and positional reasoning. The pooling operation that is considered to perform an attention mechanism in VQA is found to degrade the counting performance. A number of algorithms have been developed to address this issue. In this paper, we provide a comprehensive survey of counting techniques in the VQA system that is developed especially for answering questions such as “How many?”. However, the performance progress achieved by this system is still not satisfactory due to bias that occurs in the datasets from the way we phrase the questions and because of weak evaluation metrics. In the future, fully-fledged architecture, wide-size datasets with complex counting questions and a detailed breakdown in categories, and strong evaluation metrics for evaluating the ability of the system to answer complex counting questions, such as positional and comparative reasoning will be executed.

Funder

China Scholarship Council

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overcoming the Limitations of Learning-Based VQA for Counting Questions with Zero-Shot Learning;International Journal on Artificial Intelligence Tools;2024-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3