Identification of Retinal Ganglion Cell Firing Patterns Using Clustering Analysis Supplied with Failure Diagnosis

Author:

Ghahari Alireza1,Kumar Sumit R.1,Badea Tudor C.1

Affiliation:

1. Retinal Circuit Development and Genetics Unit, National Eye Institute, 6 Center Drive, Bethesda, MD 20892, USA

Abstract

An important goal in visual neuroscience is to understand how neuronal population coding in vertebrate retina mediates the broad range of visual functions. Microelectrode arrays interface on isolated retina registers a collective measure of the spiking dynamics of retinal ganglion cells (RGCs) by probing them simultaneously and in large numbers. The recorded data stream is then processed to identify spike trains of individual RGCs by efficient and scalable spike detection and sorting routines. Most spike sorting software packages, available either commercially or as freeware, combine automated steps with judgment calls by the investigator to verify the quality of sorted spikes. This work focused on sorting spikes of RGCs into clusters using an integrated analytical platform for the data recorded during visual stimulation of wild-type mice retinas with whole field stimuli. After spike train detection, we projected each spike onto two feature spaces: a parametric space and a principal components space. We then applied clustering algorithms to sort spikes into separate clusters. To eliminate the need for human intervention, the initial clustering results were submitted to diagnostic tests that evaluated the results to detect the sources of failure in cluster assignment. This failure diagnosis formed a decision logic for diagnosable electrodes to enhance the clustering quality iteratively through rerunning the clustering algorithms. The new clustering results showed that the spike sorting accuracy was improved. Subsequently, the number of active RGCs during each whole field stimulation was found, and the light responsiveness of each RGC was identified. Our approach led to error-resilient spike sorting in both feature extraction methods; however, using parametric features led to less erroneous spike sorting compared to principal components, particularly for low signal-to-noise ratios. As our approach is reliable for retinal signal processing in response to simple visual stimuli, it could be applied to the evaluation of disrupted physiological signaling in retinal neurodegenerative diseases.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Features of Action Potentials from Identified Thalamic Nuclei in Anesthetized Patients;Brain Sciences;2020-12-17

2. Identifying the Relationship Between Health Investment and Economic Development;Multidimensional Perspectives and Global Analysis of Universal Health Coverage;2020

3. Fluctuation Scaling of Neuronal Firing and Bursting in Spontaneously Active Brain Circuits;International Journal of Neural Systems;2019-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3