A Hybrid Online Off-Policy Reinforcement Learning Agent Framework Supported by Transformers

Author:

Villarrubia-Martin Enrique Adrian1ORCID,Rodriguez-Benitez Luis1ORCID,Jimenez-Linares Luis1ORCID,Muñoz-Valero David2ORCID,Liu Jun3ORCID

Affiliation:

1. Department of Technologies and Information Systems, Universidad de Castilla-La Mancha, Paseo de la Universidad 4, 13005 Ciudad Real, Spain

2. Department of Technologies and Information Systems, Universidad de Castilla-La Mancha, Avenida Carlos III, s/n, 45004 Toledo, Spain

3. School of Computing, University of Ulster, Northern Ireland, UK

Abstract

Reinforcement learning (RL) is a powerful technique that allows agents to learn optimal decision-making policies through interactions with an environment. However, traditional RL algorithms suffer from several limitations such as the need for large amounts of data and long-term credit assignment, i.e. the problem of determining which actions actually produce a certain reward. Recently, Transformers have shown their capacity to address these constraints in this area of learning in an offline setting. This paper proposes a framework that uses Transformers to enhance the training of online off-policy RL agents and address the challenges described above through self-attention. The proposal introduces a hybrid agent with a mixed policy that combines an online off-policy agent with an offline Transformer agent using the Decision Transformer architecture. By sequentially exchanging the experience replay buffer between the agents, the agent’s learning training efficiency is improved in the first iterations and so is the training of Transformer-based RL agents in situations with limited data availability or unknown environments.

Funder

ERDF

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3