Attention-Based Convolutional Recurrent Deep Neural Networks for the Prediction of Response to Repetitive Transcranial Magnetic Stimulation for Major Depressive Disorder

Author:

Shahabi Mohsen Sadat1,Shalbaf Ahmad1,Nobakhsh Behrooz1,Rostami Reza2,Kazemi Reza3

Affiliation:

1. Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2. Department of Psychology, University of Tehran, Tehran, Iran

3. Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran

Abstract

Repetitive Transcranial Magnetic Stimulation (rTMS) is proposed as an effective treatment for major depressive disorder (MDD). However, because of the suboptimal treatment outcome of rTMS, the prediction of response to this technique is a crucial task. We developed a deep learning (DL) model to classify responders (R) and non-responders (NR). With this aim, we assessed the pre-treatment EEG signal of 34 MDD patients and extracted effective connectivity (EC) among all electrodes in four frequency bands of EEG signal. Two-dimensional EC maps are put together to create a rich connectivity image and a sequence of these images is fed to the DL model. Then, the DL framework was constructed based on transfer learning (TL) models which are pre-trained convolutional neural networks (CNN) named VGG16, Xception, and EfficientNetB0. Then, long short-term memory (LSTM) cells are equipped with an attention mechanism added on top of TL models to fully exploit the spatiotemporal information of EEG signal. Using leave-one subject out cross validation (LOSO CV), Xception-BLSTM-Attention acquired the highest performance with 98.86% of accuracy and 97.73% of specificity. Fusion of these models as an ensemble model based on optimized majority voting gained 99.32% accuracy and 98.34% of specificity. Therefore, the ensemble of TL-LSTM-Attention models can predict accurately the treatment outcome.

Funder

Shahid Beheshti University of Medical Sciences

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3