Affiliation:
1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, P. R. China
2. Guangzhou Ruili Kormee Automotive, Electronic Co., Ltd., Guangzhou, 510663, P. R. China
Abstract
Friction as well as asperity interactions have significant influence on the contact area and force of rough surfaces. In this work, a single-asperity, elastoplastic contact model, considering friction, is established by means of continuum mechanics and power-exponential functions. Then, the deformation of the asperity interactions is modeled by the displacement of the average line for asperity height. Using fractal theory, the actual deformation and contact stiffness of an asperity are derived, which take the friction and asperity interactions into account. Furthermore, the actual contact area and normal stiffness models for fractal surfaces are developed, accounting for friction and asperity interactions. The accuracy of the developed models is confirmed by using published experimental results. The developed models are closer to experimental results than the reported fractal contact models. Finally, the effects of the friction coefficient and surface morphology parameters on contact characteristics are discussed.
Funder
Special Project for Research and Development in Key areas of Guangdong Province
Innovative Research Group Project of the National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Publisher
World Scientific Pub Co Pte Ltd