BIFURCATION ANALYSIS VERSUS MAXIMUM FORCE CRITERIA IN FORMABILITY LIMIT ASSESSMENT OF STRETCHED METAL SHEETS

Author:

ABED-MERAIM F.1,PEERLINGS R. H. J.2,GEERS M. G. D.2

Affiliation:

1. Laboratoire d'Étude des Microstructures et de Mécanique des Matériaux, LEM3, UMR CNRS 7239, Arts et Métiers ParisTech, 4 rue Augustin Fresnel, 57078 Metz Cedex 3, France

2. Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

The present contribution deals with the prediction of diffuse necking in the context of forming and stretching of metal sheets. For this purpose, two approaches are investigated, namely bifurcation and the maximum force principle, with a systematic comparison of their respective ability to predict necking. While the bifurcation approach is of quite general applicability, some restrictions are shown for the application of maximum force conditions. Although the predictions of the two approaches are identical for particular loading paths and constitutive models, they are generally different, which is even the case for elasticity, confirming the distinct nature of the two concepts. Closed-form expressions of the critical stress and strain states are derived for both criteria in elasto-plasticity and rigid-plasticity for a variety of hardening models. The resulting useful formulas in rigid-plasticity are shown to also accurately represent the elasto-plastic critical states for small ratios of the hardening modulus with respect to Young's modulus. Finally, the well-known expression of Swift's diffuse necking criterion, whose foundations are attributed in the literature to the maximum force principle, is shown here to originate from the bifurcation approach instead, providing a sound justification for it.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3