Nonlinear Thermohyperviscoelastic Constitutive Model for Soft Materials with Strain Rate and Temperature Dependency

Author:

Ghahfarokhi Zahra Matin12,Salmani-Tehrani Mehdi1,Zand Mahdi Moghimi23

Affiliation:

1. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

2. Small Medical Devices, Bio-MEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

3. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Soft materials, such as polymeric materials and biological tissues, often exhibit strain rate and temperature-dependent behavior when subjected to external loads. To characterize the thermomechanical behavior of isotropic soft material, a thermohyperviscoelastic constitutive model has been developed through an additive decomposition of strain energy function into elastic and viscous parts. A three-term generalized Rivlin strain energy function is utilized to formulate the hyperelastic part of the model, while a new viscous potential function is proposed to describe the effect of strain rate and temperature on material behavior. Toward this end, a new procedure has been proposed to determine the viscous mechanical properties as a function of strain-rate and temperature. Comparing with the previously published experimental data for linear low-density polyethylene reveals that the proposed model can sufficiently capture the nonlinearity, rate- and temperature-dependent behavior of the soft materials.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3