Behaviors of Composite Laminates Under Low-Energy Impact Using a Novel Analytical Framework

Author:

Han Xuecheng1,Cai Hongneng1ORCID,Sun Jie1,Wei Zhiyuan1,Huang Yaping1,Meng Lingqi1

Affiliation:

1. State Key Laboratory for Mechanical Behavior of Materials, Xi’ an Jiaotong University, Xi’ an Shaanxi 710049, P. R. China

Abstract

Carbon fiber-reinforced polymer (CFRP) composite laminates have the characteristics of orthogonal anisotropy and heterogeneity, so the failure mechanism under low-energy impact is very complex. As a supplement to the experiment, it is necessary to develop numerical tools to predict the mechanical behavior of composite laminates under low-energy impact. In this paper, the mechanical behavior analysis framework of composite laminates under low-energy impact load is established by using the micromechanics of failure (MMF) theory and the mixed mode exponential cohesive zone model (CZM). The failure modes of intralaminar components in composite laminates are determined by MMF theory. The damage onset and evolution process of interlaminar delamination is described by the mixed mode exponential CZM. The finite element model of composite laminates under low-energy impact is developed using the Python scripts on ABAQUS/Explicit platform. The user-defined material subroutine VUMAT is written in Fortran language. The impact responses of composite laminates with several impact energies are predicted. The intralaminar failure modes and interlaminar delamination behavior are discussed in detail. The results show that the tensile failure of matrix and interlaminar shear delamination failure are the main failure modes of composite laminates under low-energy impact load. The experimental results present better consistency with the numerical analysis, indicating that the constructed multiscale analysis method is efficient and accurate. This study expands the analysis method of mechanical behavior of composite laminates under low-energy impact. The constructed mixed mode exponential CZM also has guiding significance for the failure analysis of other bonding materials.

Funder

National Science Foundation of China and Civil Aviation Administration of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3