Affiliation:
1. State Key Laboratory for Mechanical Behavior of Materials, Xi’ an Jiaotong University, Xi’ an Shaanxi 710049, P. R. China
Abstract
Carbon fiber-reinforced polymer (CFRP) composite laminates have the characteristics of orthogonal anisotropy and heterogeneity, so the failure mechanism under low-energy impact is very complex. As a supplement to the experiment, it is necessary to develop numerical tools to predict the mechanical behavior of composite laminates under low-energy impact. In this paper, the mechanical behavior analysis framework of composite laminates under low-energy impact load is established by using the micromechanics of failure (MMF) theory and the mixed mode exponential cohesive zone model (CZM). The failure modes of intralaminar components in composite laminates are determined by MMF theory. The damage onset and evolution process of interlaminar delamination is described by the mixed mode exponential CZM. The finite element model of composite laminates under low-energy impact is developed using the Python scripts on ABAQUS/Explicit platform. The user-defined material subroutine VUMAT is written in Fortran language. The impact responses of composite laminates with several impact energies are predicted. The intralaminar failure modes and interlaminar delamination behavior are discussed in detail. The results show that the tensile failure of matrix and interlaminar shear delamination failure are the main failure modes of composite laminates under low-energy impact load. The experimental results present better consistency with the numerical analysis, indicating that the constructed multiscale analysis method is efficient and accurate. This study expands the analysis method of mechanical behavior of composite laminates under low-energy impact. The constructed mixed mode exponential CZM also has guiding significance for the failure analysis of other bonding materials.
Funder
National Science Foundation of China and Civil Aviation Administration of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献