Thermoelastic Response of FGM Plates with Temperature-Dependent Properties Resting on Variable Elastic Foundations

Author:

Sobhy Mohammed12

Affiliation:

1. Department of Mathematics and Statistics, Faculty of Science, King Faisal University, P.O. Box 400, Hofuf 31982, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt

Abstract

This paper deals with thermomechanical bending of functionally graded material (FGM) plates under various boundary conditions and resting on two-layer elastic foundations. One of these layers is Winkler springs with a variable modulus while the other is considered as a shear layer with a constant modulus. The plates are considered of the type having two opposite sides simply-supported, and the two other sides having combinations of simply-supported, clamped, and free boundary conditions. The temperature is obtained by solving the one-dimensional equation of heat conduction. The material properties of the plate are assumed to be graded continuously across the panel thickness. A simple power-law distribution in terms of the volume fractions of the constituents is used for estimating the effective material properties such as temperature-dependent thermoelastic properties. The governing equations are derived based on the sinusoidal shear deformation plate theory including the external load and thermal effects. The results of this theory are compared with those of other shear deformation theories. Various numerical results including the effect of boundary conditions, power-law index, plate aspect ratio, temperature difference, elastic foundation parameters, and side-to-thickness ratio on the bending of FGM plates are presented.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3