Study on the Seepage Force-Induced Stress and Poroelastic Stress by Flow Through Porous Media Around a Vertical Wellbore

Author:

Wang Haiyang1ORCID,Zhou Desheng12,Gao Qian1,Fan Xin1,Xu Jinze1,Liu Shun1

Affiliation:

1. School of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, P. R. China

2. Engineering Research Center of Development and Management for Low to Extra-Low Permeability Oil & Gas Reservoirs in West China, Ministry of Education, Xi’an Shiyou University, Xi’an, 710065, Shaanxi, P. R. China

Abstract

Fluid flowing through reservoir pores not only generates poroelastic stress but also exerts seepage force on rock skeleton. However, the mechanism of seepage force is not clear. Traditional methods of analyzing wellbore stability and hydraulic fracture initiation are mainly focused on the poroelastic stress without the effects of seepage force. Based on the linear elasticity and consolidation theory, this paper analyzed the mechanism of seepage force and poroelastic stress, and presented an analytical solution for seepage force-induced stress around a vertical wellbore. It also introduced how to calculate poroelastic stress by exerting hypothetical body force and surface force. Through comparison and superposition of stress fields, this paper studied the change characteristics of the poroelastic and seepage force-induced stress under different borehole pressures and the effects of seepage force on the wellbore tensile failure. Numerical simulation results show that when fluid flows through the rock, using traditional models without considering, the effect of seepage force to calculate the borehole pressure-induced stress will result in lower calculation results. Compared with the traditional model, seepage force-induced circumferential tensile stress is larger, and the seepage force significantly reduces the formation breakdown pressure. Rocks near the borehole wall with lower permeability and larger Poisson’s ratio have a greater action of seepage force. When fluid flows through the reservoir, the effects of seepage forces cannot be ignored in the analysis of hydraulic fracturing and wellbore stability.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3