Curved Electrostatic Nanobeams Incorporating Surface Energy

Author:

Khater Mahmoud E.12ORCID

Affiliation:

1. Mechanical Engineering Department, College of Engineering and Physics, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia

2. Interdisciplinary Research Center of Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia

Abstract

In this work, a study on curved electrostatically-actuated nanobeams incorporating surface energy is presented. The beam is modeled according to Euler–Bernoulli beam theory and the Gurtin–Murdoch theory of surface stress is used to incorporate surface energy effects in beam modeling. To verify the accuracy of the model, its predictions were compared to numerical results reported in previous literature on the static behavior of fixed-fixed and fixed-free nanobeams subjected to DC electrostatic potential. The results of this study demonstrate that the stiffness of both fixed–fixed and fixed-free nanobeams is influenced by surface stress. Furthermore, the findings highlight the significant impact of the electrostatic fringing field on the response of the nanobeams.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3