Effect of Asperity Interactions and Mesh Resolution on Friction Coefficient

Author:

Jourani Abdeljalil1

Affiliation:

1. Laboratoire Roberval, Centre de Recherches de Royallieu Sorbonne Universités, Université de Technologie de Compiègne, BP20259 60205, COMPIEGNE Cedex, France

Abstract

Few models are devoted to explain the effect of surface roughness on the friction coefficient. Most of them use statistical approaches and do not incorporate the transition from elastic deformation to fully plastic flow. In this paper, a three-dimensional (3D) deterministic model is developed by considering different deformation modes of surface roughness which range from fully elastic through elastic–plastic to fully plastic contact interface. The simulations show that the increase in the surface roughness and mesh resolution lead to the increase in the static friction coefficient. For surfaces which present a low roughness, the static friction coefficient increases with increase in the normal load. The transition from elastic to plastic deformation is responsible for the increase of the friction coefficient with normal load. The comparison between experimental and numerical results reveals that the experimental friction coefficient is slightly larger than the calculated one. This difference does not exceed 10%. The multiscale roughness and the simplified geometry used to describe the shape of the surface roughness can explain the gap between experimental and numerical results in terms of friction coefficient.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3