Affiliation:
1. David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1, Canada
Abstract
A famous theorem of Kuratowski states that, in a topological space, at most 14 distinct sets can be produced by repeatedly applying the operations of closure and complement to a given set. We re-examine this theorem in the setting of formal languages, where by "closure" we mean either Kleene closure or positive closure. We classify languages according to the structure of the algebras they generate under iterations of complement and closure. There are precisely 9 such algebras in the case of positive closure, and 12 in the case of Kleene closure. We study how the properties of being open and closed are preserved under concatenation. We investigate analogues, in formal languages, of the separation axioms in topological spaces; one of our main results is that there is a clopen partition separating two words if and only if the words do not commute. We can decide in quadratic time if the language specified by a DFA is closed, but if the language is specified by an NFA, the problem is PSPACE-complete.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science (miscellaneous)
Reference10 articles.
1. A. V. Chagrov, Application of Functional Analysis in Approximation Theory (Kalinin. Gos. Univ., Kalinin, 1982) pp. 186–190.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献