Affiliation:
1. Princess Sumaya University for Technology, Amman, Jordan
2. Hashemite University, Zarqa, Jordan
Abstract
Semantic similarity is the task of measuring relations between sentences or words to determine the degree of similarity or resemblance. Several applications of natural language processing require semantic similarity measurement to achieve good results; these applications include plagiarism detection, text entailment, text summarisation, paraphrasing identification, and information extraction. Many researchers have proposed new methods to measure the semantic similarity of Arabic and English texts. In this research, these methods are reviewed and compared. Results show that the precision of the corpus-based approach exceeds 0.70. The precision of the descriptive feature-based technique is between 0.670 and 0.86, with a Pearson correlation coefficient of over 0.70. Meanwhile, the word embedding technique has a correlation of 0.67, and its accuracy is in the range 0.76–0.80. The best results are achieved by the feature-based approach.
Publisher
World Scientific Pub Co Pte Lt
Subject
Library and Information Sciences,Computer Networks and Communications,Computer Science Applications
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献