COMPARISON OF TWO METHODS FOR GENERATING THE COALITIONS OF CLASSIFIERS AND TWO METHODS FOR REDUCING DIMENSIONALITY IN A DISPERSED DECISION-MAKING SYSTEM

Author:

PRZYBYŁA-KASPEREK MAŁGORZATA1

Affiliation:

1. Institute of Computer Science, University of Silesia, Bȩdzińska 39, 41-200 Sosnowiec, Poland

Abstract

In this paper, we consider a system in which knowledge in a dispersed form is available. In the system local classifiers are combined into coalitions. Two methods of combining classifiers in coalitions are discussed in this paper — with a hierarchical agglomeration algorithm and with Pawlak’s conflict model. The purpose of this paper is to apply methods for reducing dimensionality in these two approaches. Two methods of attribute reduction are considered — based on the rough set theory and based on attribute correlation with decision class. The most important conclusions formulated in the paper are as follows. The use of attribute selection method improves the quality of classification of the dispersed system. Better results are generated by the system with a hierarchical agglomeration algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized objects in the system with dispersed knowledge;Expert Systems with Applications;2020-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3