QUANTIFYING EMERGENCE IN TERMS OF PERSISTENT MUTUAL INFORMATION

Author:

BALL ROBIN C.1,DIAKONOVA MARINA1,MACKAY ROBERT S.2

Affiliation:

1. Centre for Complexity Science and Department of Physics, University of Warwick, Coventry, CV4 7AL, UK

2. Centre for Complexity Science and Department of Mathematics, University of Warwick, Coventry, CV4 7AL, UK

Abstract

We define Persistent Mutual Information (PMI) as the Mutual (Shannon) Information between the past history of a system and its evolution significantly later in the future. This quantifies how much past observations enable long-term prediction, which we propose as the primary signature of (Strong) Emergent Behavior. The key feature of our definition of PMI is the omission of an interval of "present" time, so that the mutual information between close times is excluded: this renders PMI robust to superposed noise or chaotic behavior or graininess of data, distinguishing it from a range of established Complexity Measures. For the logistic map, we compare predicted with measured long-time PMI data. We show that measured PMI data captures not just the period doubling cascade but also the associated cascade of banded chaos, without confusion by the overlayer of chaotic decoration. We find that the standard map has apparently infinite PMI, but with well-defined fractal scaling which we can interpret in terms of the relative information codimension. Whilst our main focus is in terms of PMI over time, we can also apply the idea to PMI across space in spatially-extended systems as a generalization of the notion of ordered phases.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A superstatistical measure of distance from canonical equilibrium;Journal of Physics A: Mathematical and Theoretical;2024-07-05

2. Learning to Optimize;Recent Advances in Computational Optimization;2022

3. Opening Towards a New Reality, Together;ICT Policy, Research, and Innovation;2020-11-06

4. Anatomy of a Spin: The Information-Theoretic Structure of Classical Spin Systems;Entropy;2017-05-08

5. Elusive present: Hidden past and future dependency and why we build models;Physical Review E;2016-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3