A traffic status evaluation method of expressway merging area based on improved coupling theory

Author:

Wang Ya1ORCID,Fu Qiang2ORCID,Wang Xianguang3

Affiliation:

1. Institute of Design and Management, China Construction Eighth Engineering Division Co., Ltd., Shanghai 201206, China

2. College of Transportation Engineering, Tongji University, Shanghai 200092, China

3. Research Institute of Sciences, Ministry of Transport, Beijing 100029, China

Abstract

In order to further reveal the law and characteristics of on-ramp traffic flow into the main line of expressway road and make up for the deficiency of traditional inflow model which cannot evaluate the state of merging area, the coupling theory in physics was introduced. First of all, “gap acceptance” model was adopted to describe the operation law of merging area, and the relationship between important parameters such as flow rate and headway was analyzed by using discrete probability function. Second, coupling degree and coupling coordination degree were put forward, after analyzing the characteristic under the premise of the merging area, using a large amount of measured data regression analysis of the traffic, location speed and the headway of parameters in the coupling. The coupling theory was modified, the coupling function evaluation model of confluence area was established, and the interaction and influence between main line and ramp system were quantitatively analyzed and evaluated. Finally, the model is verified by the actual observation data of Shanghai expressway. The results indicate that in the early peak period, the coupling coordination degree is about 0.36 and 0.4, which is in a moderate coordination stage. During the peak flow period, the coupling coordination degree is only 0.28, which is in a low degree of coordination coupling and the system is relatively disordered. In nonpeak hours, the coupling coordination degree is around 0.83, which is in an extremely coordinated state. The error between the flow calculated by the coupling theory and the data observed in the field is generally 4.2%–12.8%, which indicates that the results of the running status evaluation of merging area by using this model are reliable.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Central Public-interest Scientific Institution Basal Research Fund, Chinese Academy of Fishery Sciences

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3