Application of surface acoustic wave to enhance the photocatalytic degradation efficiency of methylene blue

Author:

Water Walter1ORCID,Shi Yu-Zhen1

Affiliation:

1. Department of Electronic Engineering, National Formosa University, Yunlin 632, Taiwan, ROC

Abstract

The TiO2 thin film was grown on a [Formula: see text] Y-axis cut, X-axis propagation lithium niobate substrate by radio frequency magnetron sputtering to fabricate a surface acoustic wave device. The sputtering ratios of argon to oxygen at 20% and post-annealing temperature at [Formula: see text]C for 3 h were controlled to improve the photocatalytic activity of TiO2 thin film. The effects of work frequency and input voltage of the surface acoustic wave device on the methylene blue photocatalytic degradation efficiency of the TiO2 thin film were investigated. The TiO2 thin film was vibrated at radio frequency by surface acoustic wave device to increase the scattering and reactive frequency for methylene blue in liquid. The surface acoustic wave device operated at 28.65 MHz work frequency and 0.95 V input voltage revealed the highest photocatalytic degradation efficiency of methylene blue. Compared to the TiO2 thin film combined with and without surface acoustic wave device, the surface acoustic wave device enhanced the TiO2 thin film photocatalytic degradation efficiency to 46%.

Funder

Ministry of Science and Technology of the Republic of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The use of radio frequency in photocatalysis, progress made and the way forward: Review;Journal of Environmental Chemical Engineering;2023-12

2. Preparation and performance of an investigated temperature response device based on Sn–3.5 Ag film;Journal of Materials Science: Materials in Electronics;2022-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3