Fractal analysis and ferroelectric properties of Nd(Zn1 2Ti1 2)O3(NZT)

Author:

Khamoushi Kouros1ORCID,Serpa Cristina2

Affiliation:

1. Faculty of Engineering and Natural Science, Tampere University, P. O. Box 1001, FI-33014, Tampere 33720, Finland

2. Instituto Superior de Engenharia de Lisboa and Centro de Matemática, Aplicações Fundamentais e Investigação, Operacional, Portugal

Abstract

The challenges in productivity of satellite mobile devices are growing rapidly to overcome the question of miniaturization. The intention is to supply the electrical and microwave properties of materials by discovering their outstanding electronic properties. Neodymium Zinc Titanate (NZT) can be a promising ferroelectric material due to its stable dielectric and microwave properties. The grain size and shape of NZT have a strong influence on overall material performances. Therefore, shape, reconstruction and property of the coming compound take an important part and can be predicted before being utilized in the devices. The significant of this research is to define ferroelectric properties of NZT and to characterize it by using Fractal Nature Analysis (FNA). FNA is a powerful mathematical technique that could be applied to improve the grain shape and interface reconstruction. The fractal structure is identified by its self-similarity. The self-similarity of an object means a repetition of shapes in smaller scales. A measure of this structure is computed using the Hausdorff dimension. It is for the first time in this investigation the Fractal analysis method is applied for the microwave materials microstructure reconstruction which makes this research an innovative work and will open the door for Curie–Weiss law fractal correction. In connection to our previous research for dielectric properties fractalization, we had some characterization and reconstruction data which include the Hausdorff dimension (HD).

Funder

National Funding from FCT — Fundação para a Ciência e a Tecnologia

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Reference38 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3