Affiliation:
1. Department of Physics, Shahid Bahonar University of Kerman, Kerman, Iran
Abstract
For the first time, an optical model is applied to superstrate configuration of CdS/CIGS thin film solar cells with graphene front/back contact (FC/BC) to simulate the loss in current density and efficiency. Graphene shows to be a great candidate to replace with the metallic BC transparent conductive oxides as the front electrode. Our model is based on the refractive index and extinction coefficient and takes into account the reflection and absorption in interfaces and layer’s thickness, respectively. CIGS cells with graphene as front electrode have a lower current density and efficiency than the one with graphene BC. However, the bifacial configuration shows a higher current density and efficiency, mostly because of a higher transmission rate. The interference effect was observed in simulation of transmission rate of hybrid cells representing that graphene can cause multiple reflection. We simulated the device parameters versus the ZnO layer’s thickness, which is essential for high quality interfaces. However, the simulation results are also consistent when CdS thickness is replaced with inorganic ZnO.
Funder
Iran Nanotechnology Initiative Council
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献