Study of shape, size and temperature-dependent elastic properties of nanomaterials

Author:

Goyal Monika1ORCID,Gupta B. R. K.1

Affiliation:

1. Department of Physics, IAH, GLA University, Mathura 281406, U.P., India

Abstract

The impact of shape, size and temperature on elastic properties of nanomaterials is studied in this work. We have extended the melting temperature expression for nanostructures formulated by Guisbiers et al. and obtained the expression of elastic moduli and thermal expansivity for nanomaterials. An isobaric Tait equation of state is combined with Guisbiers model and the model so obtained is applied to analyze the shape, size and temperature effect on Young’s modulus and thermal expansivity in nanomaterials. The present computed results are compared with the simulated results and available experimental data. The Young’s modulus is observed to decrease as particle size is reduced while thermal expansivity increases with decrease in the size of nanomaterial. The Young’s modulus shows decrease with increase in temperature and decrement is observed maximum in spherical nanomaterials and minimum in nanofilms (NFs). Rate at which modulus is decreasing is found to increase as particle size is reduced. Good consistency of present predicted results with the available theoretical and experimental data is observed. The present calculated results are thus found consistent with the general trend of variation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3