Strain engineering of electronic, mechanical, and optical properties of orthorhombic III–V group monolayers by first principles calculations

Author:

Jin Xuehu1ORCID,Yao Can1,Qi Yunxi1ORCID,Zhao Jun1ORCID,Zeng Hui2ORCID

Affiliation:

1. Jiangsu Provincial Engineering Research Center of Low, Dimensional Physics and New Energy, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China

2. School of Microelectronics, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China

Abstract

Using first principles calculations, we systematically investigated the effects of strain engineering on the electronic, mechanical, and optical properties of two-dimensional (2D) orthorhombic III–V group materials, including BN, BP, BAs, AlN, AlP, and GaN. It is shown that all the III–V orthorhombic monolayers exhibit excellent mechanical anisotropy for Young’s modulus, Shear modulus, and Poisson’s ratio, especially for the AlN and GaN monolayers. AlN, AlP, and GaN are predicted to be indirect bandgap semiconductors, with their bandgap of 0.70, 0.15, and 0.53 eV, respectively. And BN is demonstrated to be a direct bandgap semiconductor (0.63 eV). Under uniaxial tensile strains, their electronic structures have non-monotonic anisotropic variations and these monolayers can be effectively modulated from metal to semiconductor, experiencing indirect–direct bandgap transitions. In addition, all the orthorhombic III–V materials exhibit highly anisotropic light-harvesting performances and the optical absorbance can be efficiently tailored with tensile strains applied along a- and b-directions. The strong optical absorptions in the visible light regions suggested that AlN, BN, and GaN may be optically tunable 2D materials for component absorbance layers for solar cell applications. The excellent anisotropic and tunable electronic, mechanical, and optical performances indicate that the orthorhombic III–V monolayers are promising candidates for potential applications of optoelectronics and photovoltaics.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3