Near consensus complex linear and nonlinear social networks

Author:

Ling Bingo Wing-Kuen1,Ho Charlotte Yuk-Fan2,Wang Lidong3,Teo Kok-Lay4,Tse Chi K.5,Dai Qingyun1

Affiliation:

1. Faculty of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China

2. Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China

3. School of Science, Dalian Nationalities University, 18 Liaohe West Road, Dalian Economic and Technical Development Zone, Dalian 116600, China

4. Department of Mathematics and Statistics, Curtin University of Technology, Perth, Western Australia WA6002, Australia

5. Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Abstract

Some of the nodes of complex social networks may support for a given proposal, while the rest of the nodes may be against the given proposal. Even though all the nodes support for or are against the given proposal, the decision certitudes of individual nodes may be different. In this case, the steady state values of the decision certitudes of the majority of the nodes are either higher than or lower than a threshold value. Deriving the near consensus property is a key to the analysis of the behaviors of complex social networks. So far, no result on the behaviors of the complex social networks satisfying the near consensus property has been reported. Hence, it is useful to extend the definition of the exact consensus property to that of a near consensus property and investigate the behaviors of the complex social networks satisfying the near consensus property. This paper extends the definition of exact consensus complex social networks to that of near consensus complex social networks. For complex linear social networks, this paper investigates the relationships among the vectors representing the steady state values of the decision certitudes of the nodes, the influence weight matrix and the set of vectors representing the initial state values of the decision certitudes of the nodes under a given near consensus specification. The above analysis is based on the Eigen theory. For complex nonlinear social networks with certain types of nonlinearities, the relationship between the influence weight matrix and the vectors representing the steady state values of the decision certitudes of the nodes is studied. When a complex nonlinear social network does not achieve the exact consensus property, the optimal near consensus condition that the complex social network can achieve is derived. This problem is formulated as an optimization problem. The total number of nodes that the decision certitudes of the nodes are either higher than or lower than a threshold value is maximized subject to the corresponding near consensus specification. The optimization problem is a nonsmooth optimization problem. The nonsmooth constraints are first approximated by smooth constraints. Then, the approximated optimization problem is solved via a conventional smooth optimization approach. Computer numerical simulation results as well as the comparisons of the behaviors of complex nonlinear social networks to those of the complex linear social networks are presented. The obtained results demonstrate that some complex social networks can satisfy the near consensus property but not the exact consensus property. Also, the conditions for the near consensus property are dependent on the types of nonlinearities, the influence weight matrix and the vectors representing the initial state values of the decision certitudes of the nodes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polynomial-Approximation-Based Control for Nonlinear Systems;Circuits, Systems, and Signal Processing;2016-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3