Nonlinear analysis of a new two-lane lattice hydrodynamic model accounting for “backward looking” effect and relative flow information

Author:

Qi Xinyue123,Cheng Rongjun123,Ge Hongxia123

Affiliation:

1. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China

2. Jiangsu Province Collaborative Innovation Center for Modern Urban Traffic Technologies, Nanjing 210096, China

3. National Traffic Management Engineering and Technology Research Centre, Ningbo University Sub-Centre, Ningbo 315211, China

Abstract

In this paper, a new two-lane lattice hydrodynamic model is presented by accounting for the “backward looking” effect and the relative flow information. Linear analysis is applied to deduce the linear stability condition. With this method, we can demonstrate that “backward looking” and relative flow information have great positive significance in improving traffic flow stability. Nonlinear analysis is performed to derive the mKdV equation, which can represent transmission characteristic of density waves. The results achieved by the numerical simulation are consistent with theoretical analytical results. Numerical results indicate that both “backward looking” effect and relative flow information are helpful to heighten the traffic flow stability efficiently in two-lane traffic model.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3