Uncertainty quantification analysis with arbitrary polynomial chaos method: Application in slipstream effect of propeller aircraft

Author:

Li Yao1,Si Haiqing1ORCID,Wu Xiaojun2,Zhao Wei2,Li Gen1,Qiu Jingxuan1

Affiliation:

1. College of General Aviation and Flight, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. China Aerodynamics Research and Development Center, Mianyang 621000, China

Abstract

The slipstream effect of propeller aircraft has a major impact on aircraft aerodynamic characteristics. Predicting the interaction of propeller slipstream on flow field over a complete aircraft has been an important topic in the field of fluid mechanics. In the flight test, we found that parameters in the flight data of propeller aircraft exhibit significant stochastic characteristics, and the mechanism of the influence of these stochastic parameters on aerodynamic characteristics of propeller aircraft needs to be further studied. Therefore, we combine arbitrary Polynomial Chaos method with Computational Fluid Dynamics (CFD) according to the characteristics of stochastic parameter distribution, propose an uncertainty CFD analysis method, and apply it to the aerodynamic uncertainty analysis of propeller aircraft. Results show that the standard deviation (Std) of the pressure coefficient [Formula: see text] on the wing surface will form an extreme region at windward side and separation position, respectively, which will gradually decrease with the flow direction. Furthermore, the slipstream will reduce the local Std on wing surface, and the downwash caused by slipstream will change the Std distribution on the leading edge of the horizontal tail.

Funder

the Civil Aircraft Simulation Flight Test Data Acquisition Project

Postgraduate Research & Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3