Novel prioritized LRU circuits for shared cache in computer systems

Author:

Wang Yao1ORCID,Sun Lijun2,Wang Haibo3,Gopalakrishnan Lavanya3,Eaton Ronald3

Affiliation:

1. School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China

2. Key Laboratory of Grain Information Processing and Control, Ministry of Education, Zhengzhou Key Laboratory of Machine Perception, and Intelligent System, College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China

3. Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale, IL 62901, USA

Abstract

Cache sharing technique is critical in multi-core and multi-threading systems. It potentially delays the execution of real-time applications and makes the prediction of the worst-case execution time (WCET) of real-time applications more challenging. Prioritized cache has been demonstrated as a promising approach to address this challenge. Instead of the conventional prioritized cache schemes realized at the architecture level by using cache controllers, this work presents two prioritized least recently used (LRU) cache replacement circuits that directly accomplish the prioritization inside the cache circuits, hence significantly reduces the cache access latency. The performance, hardware and power overheads due to the proposed prioritized LRU circuits are investigated based on a 65 nm CMOS technology. It shows that the proposed circuits have very low overhead compared to conventional cache circuits. The presented techniques will lead to more effective prioritized shared cache implementations and benefit the development of high-performance real-time systems.

Funder

Young Scientists Fund

Science and Technology Project of Henan Province

Scientific Research Start-up Foundation of Zhengzhou University

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3