Effect of energy, temperature, and Cu-doped coatings on crystallinity of Hydroxyapatite thin films obtained by pulsed laser deposition

Author:

Kashi Nooshin1,Momeni Mahdi1ORCID,Hamidinezhad Habib2

Affiliation:

1. Faculty of Physics, Shahrood University of Technology, Shahrood, Iran

2. Departments of Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran

Abstract

In this work, a pulsed laser deposition (PLD) technique with an Nd:YAG laser source was used to produce pure Hydroxyapatite (HA) and Cu-substituted HA (Cu-HA) coatings on stainless steel substrates in vacuum at room temperature. It is observed that the combined effects of percentages of Cu dopants and laser energy as well as annealing temperature significantly modify the crystallinity of the films. The morphology and structural properties of the deposited HA films were analyzed by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and Raman spectroscopy. FESEM images displayed various shapes of nanoparticles with high-surface density throughout the area of the substrate and with typical sizes around 26–208 nm. XRD analysis confirmed that post-deposition annealing is essential to achieve the desired crystallinity and uniformity of coatings. The Raman spectrum of HA has peaks at 958.22, 437.48, and 587.05 cm[Formula: see text] attributed to the [Formula: see text] PO[Formula: see text], [Formula: see text] PO[Formula: see text], and [Formula: see text] PO[Formula: see text], respectively. The synthesized HA and Cu-HA crystalline films are nanostructures with dense and compact microstructures. Finally, irregular surface and crystalline structure of fabricated films lead to the extension of the surface and enhance the cell’s proliferation in medical uses and biomedical applications.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3