THE CHARACTERIZATION OF TOPOLOGICAL PROPERTIES IN QUANTUM MONTE CARLO SIMULATIONS OF THE KANE–MELE–HUBBARD MODEL

Author:

MENG ZI YANG12,HUNG HSIANG-HSUAN3,LANG THOMAS C.4

Affiliation:

1. Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

2. Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

3. Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA

4. Department of Physics, Boston University, Boston, MA 02215, USA

Abstract

Topological insulators present a bulk gap, but allow for dissipationless spin transport along the edges. These exotic states are characterized by the Z2 topological invariant and are protected by time-reversal symmetry. The Kane–Mele model is one model to realize this topological class in two dimensions, also called the quantum spin Hall state. In this brief review article, we provide a pedagogical introduction to the influence of correlation effects in the quantum spin Hall states, with special focus on the half-filled Kane–Mele–Hubbard model, solved by means of unbiased determinant quantum Monte Carlo (QMC) simulations. We explain the idea of identifying the topological insulator via π-flux insertion, the Z2 invariant and the associated behavior of the zero-frequency Green's function, as well as the spin Chern number in parameter-driven topological phase transitions. The examples considered are two descendants of the Kane–Mele–Hubbard model, the generalized and dimerized Kane–Mele–Hubbard model. From the Z2 index, spin Chern numbers and the Green's function behavior, one can observe that correlation effects induce shifts of the topological phase boundaries. Although the implementation of these topological quantities has been successfully employed in QMC simulations to describe the topological phase transition, we also point out their limitations as well as suggest possible future directions in using numerical methods to characterize topological properties of strongly correlated condensed matter systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3