On the investigation of fractional coupled nonlinear integrable dynamical system: Dynamics of soliton solutions

Author:

Muhammad Jan1,Younas Usman1,Rezazadeh Hadi2ORCID,Ali Hosseinzadeh Mohammad2ORCID,Salahshour Soheil345

Affiliation:

1. Department of Mathematics, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China

2. Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran

3. Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey

4. Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey

5. Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

Abstract

The primary focus of this paper is the investigation of the truncated M fractional Kuralay equation, which finds applicability in various domains such as engineering, nonlinear optics, ferromagnetic materials, signal processing, and optical fibers. As a result of its capacity to elucidate a vast array of complex physical phenomena and unveil more dynamic structures of localized wave solutions, the Kuralay equation has received considerable interest in the scientific community. To extract the solutions, the recently developed integration method, referred to as the modified generalized Riccati equation mapping (mGREM) approach, is utilized as the solving tool. Multiple types of optical solitons, including mixed, dark, singular, bright-dark, bright, complex, and combined solitons, are extracted. Furthermore, solutions that are periodic, hyperbolic, and exponential are produced. To acquire a valuable understanding of the solution dynamics, the research employs numerical simulations to examine and investigate the exact soliton solutions. Graphs in both two and three dimensions are presented. The graphical representations offer significant insights into the patterns of voltage propagation within the system. The aforementioned results make a valuable addition to the current body of knowledge and lay the groundwork for future inquiries in the domain of nonlinear sciences. The efficacy of the modified GREM method in generating a wide range of traveling wave solutions for the coupled Kuralay equation is illustrated in this study.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3