Acoustic radiation simulation and pre-stress effect on compact acoustic levitation platform

Author:

Wei Bin12ORCID,He Yongyong2,Wang Wei2

Affiliation:

1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

2. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China

Abstract

In order to satisfy the requirements of precise components with tidiness, low power and high stability in the field of biological engineering, medical equipment and semiconductors etc. a pre-stress acoustic transport prototype without horn was proposed in this paper. The mechanism of levitation and transport which is driven by orthogonal waves was revealed by the analysis of waveform and squeeze film characteristics in high-frequency exciting condition; also, the electric, solid and acoustic coupled finite element method (FEM) was established to investigate the effect of pre-stress and acoustic pressure distribution in the near field. The levitation and driving capacity of near field acoustic levitation (NFAL) transport platform without horns can be proved in this experiment and further to achieve the goal of parameters optimization. The theoretical and experimental results indicate that the pre-stress has a significant effect on resonant frequency and levitating stability, the pre-stress are determined by the DC voltage offset which is related to the system working point so that we cannot increase the offset and exciting voltage unlimitedly to improve the stability. At the same time, the calculated pressure distribution of acoustic radiation can generally reflect the regional bearing capacity in near and far field for levitation. These achievements can partly solve the problem of accuracy design of prototype and thickness of gas film, supporting for accuracy close loop control of levitating height.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

China Postdoctoral Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3