Numerical simulation for radiative hybrid nanofluid (TiO2+Fe3O4∕H2O) flow due to a non-uniform stretching sheet with variable permeability

Author:

Thamizhselvi V.1ORCID,Satya Narayana P. V.1ORCID

Affiliation:

1. Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India

Abstract

Variable permeability plays a crucial role in various manufacturing and technical applications such as fixed-bed catalytic reactors, heat exchangers, and dying, among others. The primary focus of this paper is to investigate the impacts of variable permeability on hybrid nanofluid (HNF) flow due to nonlinear sheet stretching with thermal heat flux. The HNF is made up of a mixer of [Formula: see text] and [Formula: see text] nanoparticles and water serving as the base fluid. Using efficient similarity transformations, the flow-governing equations are converted into a set of ordinary differential equations, and the resulting system is computationally solved by using the MATLAB program (bvp4c). The impact of various physical variables on the fluid velocity and heat transfer characteristics is analyzed via graphs. It is found that as the permeability parameter rises, the velocity of the HNF diminishes while the temperature amplifies. The drag force coefficient declines with an intensification of the volume fraction of the [Formula: see text] nanoparticles. The HNF [Formula: see text] exhibits 0.45–0.75% increase in heat transfer rate when compared to a nanofluid [Formula: see text] for different values of heat source parameter. The current investigation is compared to the existing literature, revealing a good level of agreement.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3