Affiliation:
1. Federal Institute of Science & Technology (FISAT), Angamaly, India
2. School of Engineering, CUSAT, India
3. NPOL, Kochi, India
Abstract
Analyzing and gathering the people’s reactions on product trading, public services, etc. are crucial. Sentiment analysis (also termed as opinion mining) is a usual dialogue preparing act that plans on discovering the sentiments after opinions in texts on changing subjects. This research work adopts a novel sentiment analysis approach that comprises six phases like (i) Pre-processing, (ii) Keyword extraction and its sentiment categorization, (iii) Semantic word extraction, (iv) Semantic similarity checking, (v) Feature extraction, and (vi) Classification. Accordingly, the Mongodb documented tweets initially underwent pre-processing with stop word removal, stemming, and blank space removal. Regarding the extracted keywords, the existing semantic words are derived after categorizing the sentiment of keywords. Additionally, the semantic similarity score is evaluated along with their keywords. The subsequent step is feature extraction, where the Holoentropy features such as cross Holoentropy and joint Holoentropy are formulated. Along with this, the extraction of weighted holoentropy features is the major work, where weight is multiplied with the holoentropy features. Moreover, in order to enhance the performance of classification results, the constant term utilized in evaluating the weight function is optimized. For this optimal tuning, a new, improved algorithm termed as Self Adaptive Moth Flame Optimization (SA-MFO) is introduced, which is the adaptive version of MFO algorithm. For classification, this paper aims to use the Deep Convolutional Neural network (DCNN), where the batch size is fine-tuned using the same SA-MFO algorithm. Finally, the performance of the proposed work is compared over other conventional models with respect to different performance measures.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science (miscellaneous),Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献