Multidimensional Benchmarking Framework for AQMs of Network Congestion Control Based on AHP and Group-TOPSIS

Author:

Khatari Maimuna1,Zaidan A. A.1,Zaidan B. B.12,Albahri O. S.1,Alsalem M. A.1,Albahri A. S.13

Affiliation:

1. Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Perak, Malaysia

2. Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan, ROC

3. Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq

Abstract

This paper aims to propose a grouping framework for benchmarking the active queue management (AQM) methods of network congestion control based on multicriteria decision-making (MCDM) techniques to assist developers of AQM methods in selecting the best AQM method. Given the current rapid development of the AQM techniques, determining which of these algorithms is better than the other is difficult because each algorithm performs better in a specific metric(s). Current benchmarking studies benchmark the AQM methods from a single incomplete prospective. In each proposed AQM method, the benchmarking was achieved with reference to some evaluation measures that are relatively close to the desired goal being followed during the development of the AQM methods. Furthermore, the benchmarking frameworks of AQM methods are complicated and challenging because of the following reasons: (1) the technical details of the AQM methods are adapted and the input parameters are selected according to the sensitivity of the AQM methods; and (2) a framework is developed and designed for simulating AQM methods, the simulated network and the collected results. For this purpose, a set of criteria for AQM comparison are determined. These criteria are performance, processing overhead and configuration. The benchmarking framework is developed based on the crossover of three groups of multi-evaluation criteria and several AQM methods as a proof of concept. The AQM families that are implemented and utilized in experiments to generate the data that are used as a proof of concept of our proposed framework are the parameter-based (pars) and fuzzy-based AQM methods. Accordingly, constructing the decision matrix (DM) that will be used to generate the final results is necessary. Subsequently, the underlying AQM methods are benchmarked and ranked using MCDM techniques, namely, integrated analytical hierarchy process (AHP) and technique for order of preference by similarity to ideal solution (TOPSIS). The validation was performed objectively. The [Formula: see text] deviation was computed to ensure that the AQM methods ranking undergo systematic ranking. Results illustrate that (1) the integration of AHP and TOPSIS solves the AQM method benchmarking problems; (2) results of the individual TOPSIS context clearly show variances among the ranking results of the six experts; (3) the ranks of the AQM methods obtained from internal and external TOPSIS group decision-making are nearly similar, with random early detection method being ranked as the best one; and (4) in the objective validation, significant differences were found between the groups’ scores, thereby indicating that the ranking results of internal and external TOPSIS group decision-making were valid.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3