Affiliation:
1. Department of Mathematics, Faculty of Science, Benha University, Egypt
2. Institute of Mathematics, University of Debrecen, Debrecen, Hungary
Abstract
In this paper, as an application of the inverse problem of calculus of variations, we investigate two compatibility conditions on the spherically symmetric Finsler metrics. By making use of these conditions, we focus our attention on the Landsberg spherically symmetric Finsler metrics. We classify all spherically symmetric manifolds of Landsberg or Berwald types. For the higher dimensions [Formula: see text], we prove that all Landsberg spherically symmetric manifolds are either Riemannian or their geodesic sprays have a specific formula; all regular Landsberg spherically symmetric metrics are Riemannian; all (regular or non-regular) Berwald spherically symmetric metrics are Riemannian. Moreover, we establish new unicorns, i.e. new explicit examples of non-regular non-Berwaldian Landsberg metrics are obtained. For the two-dimensional case, we characterize all Berwald or Landsberg spherically symmetric surfaces.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Physics and Astronomy (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献