ABSORBING BOUNDARY CONDITIONS FOR A WAVE EQUATION WITH A TEMPERATURE-DEPENDENT SPEED OF SOUND

Author:

SHEVCHENKO IGOR1,KALTENBACHER MANFRED2,WOHLMUTH BARBARA1

Affiliation:

1. Department of Numerical Mathematics, Technical University of Munich, Garching, 85748, Germany

2. Institute of Mechanics and Mechatronics, Vienna University of Technology, Vienna, 1040, Austria

Abstract

In this work, new absorbing boundary conditions (ABCs) for a wave equation with a temperature-dependent speed of sound are proposed. Based on the theory of pseudo-differential calculus, first- and second-order ABCs for the one- and two-dimensional wave equations are derived. Both boundary conditions are local in space and time. The well-posedness of the wave equation with the developed ABCs is shown through the reduction of the original problem to an equivalent one for which the uniqueness and existence of the solution has already been established. Although the second-order ABC is more accurate, the numerical realization is more challenging. Here we use a Lagrange multiplier approach which fits into the abstract framework of saddle point formulations and yields stable results. Numerical examples illustrating stability, accuracy and flexibility of the ABCs are given. As a test setting, we perform computations for a high-intensity focused ultrasound (HIFU) application, which is a typical thermo-acoustic multi-physics problem.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Acoustics and Ultrasonics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3